Artificial Intelligence

Automation in DevOps

Adding Automation in DevOps for Thriving AI Models

DevOps, as the name suggests, is a coordinated approach that integrates software development and operations to facilitate seamless software delivery. DevOps breaks down silos and supports a culture of collaboration to achieve faster, more dependable, and higher-quality software releases.

Automation is a crucial pillar of DevOps, as it allows teams to automate different tasks and processes throughout the software development lifecycle. Using automation, DevOps potentially uses Artificial Intelligence to minimize human error, quicken time-to-market, and enhance overall software quality.

But now the biggest question is- How to involve automation in DevOps. Which DevOps processes can be automated? Will it be in parts, or the entire process can be automated? What tools and technologies should be used?

So, here, in this blog, we will discuss DevOps and the importance of automation in DevOps. We will go through different aspects of automation and learn about the benefits offered by automation in DevOps.

DevOps automation utilizes different tools, techniques, and technologies to simplify and automate the duties involved in software development, application deployment, and IT operations.

The primary objective of DevOps automation is to enhance the efficiency, consistency, and reliability of software development and execution processes while minimizing human interventions and errors.

Let us know the Benefits offered by DevOps Automation

DevOps teams can potentially utilize the benefits of automation to revolutionize software development and existing operations. This enables the team to deliver faster, more efficient, and error-free software.

Prompter Time-to-Market:

Automation quickens the complete software development process, beginning from coding to execution. Once liberated from redundant tasks, teams can release new features and updates on time, decreasing time-to-market and staying ahead of others.

Better Consistency and Reliability:

Automated operations confirm consistent and steadfast outcomes. Human interference usually causes errors, whereas automation is the preface of standardized practices, promising fewer errors and a more predictable environment.

Promises reduced Manual Errors:

Human errors are natural in manual tasks. Luckily, using automation practices, DevOps teams will be able to reduce the risk of mistakes caused by human negligence, upgrade software quality, and develop more stable production environments.

Effectual Resource Utilization:

The development team can use resources more efficiently by using automation tools. In fact, infrastructure provisioning and scaling can also be automated depending on the need, optimizing resource allocation and cost-effectiveness.

Scalability:

It is pretty simple to scale applications and infrastructure either up or down, depending on the need. Automated provisioning and configuration allow rapid scaling to manage increased workloads without any human interference.

Improved Cooperation:

DevOps automation facilitates association between development and operations teams. DevOps automation tools offer a standard platform for both teams to work together, lessening communication gaps and supporting a culture of shared accountability.

Faster Recovery and Rollback:

Automation processes’ best part is that they allow quick recovery from failures. Automated backup and recovery approaches can be activated in case of any issue, minimizing downtime and reducing user impact. In the same way, automated rollbacks guarantee that faulty installations can be immediately retreated.

Smooth Predictable Deployments:

Automation in DevOps ensures that deployments are compatible across different environments, relieving the “it works on my machine” situation. This results in smoother transitions from development to production environments.

Infrastructure as Code (IaC):

Automating infrastructure provisioning by utilizing IaC tools streamlines the control of complex circumstances. This also promises easy versioning, tracking, and replicating Infrastructure across diverse stages while lowering configuration import and manual setup mistakes.

Resource Cost Optimization:

Automation supports optimizing resource allocation by permitting resources to turn up or down based on need. This averts over-provisioning and waste of resources, ultimately directing to cost savings.

Compliance and Protection:

Automation facilitates enforcing security and compliance policies throughout the development and deployment procedure. It would be best to reduce manual work in security checks, exposure scans, and access controls to reduce the threat of security breaches.

Continuous Progress:

Automation fosters a culture of endless advancement by allowing teams to collect data and insights on implementation, bottlenecks, and trends. This data can be further used to improve processes and boost overall efficiency.

Which DevOps procedures can be automated?

In a DevOps domain, automation can be executed across the entire software development process, initiating from coding and building to testing, execution, and monitoring.

  • Continuous Integration (CI) – It can automatically integrate code changes from multiple developers into a shared storage. Automation equipment like Travis CI, Jenkins, and CircleCI can be employed to start automated builds, run tests, and offer early feedback on code modifications.
  • Continuous Delivery/Deployment (CD) – Automate deploying code shifts to production or staging environments. Automation tools like Kubernetes, Docker, and Ansible will help in application deployment, infrastructure provisioning, and configuration control.
  • Infrastructure as Code (IaC):  Ithelps manage and provision infrastructure employing code. Terraform and CloudFormation tools empower teams to determine infrastructure resources, like servers and networks, as code that can be further versioned, tested, and automated.
  • Automated Testing: Executes tests automatically, confirming that code changes do not cause defects or regressions. This involves unit, integration, and end-to-end tests that can be initiated as a part of the CI/CD pipeline.
  • Monitoring and Alerting – It can keep track of the health condition and performance of applications and infrastructure. When set thresholds are breached, automated alters are initiated to inform the operations team of potential challenges.
  • Log Analysis – Automation tools can filter through logs produced by applications and infrastructure to determine ways, irregularities, and potential problems, assisting in troubleshooting and assertive maintenance.
  • Release Management – Automating the release procedure promises consistency and lowers the threat of human error during the execution of new features or bug fixes.
  • Security and Compliance – It implements security terms and policies, scans code for vulnerabilities, and guarantees compliance with regulatory standards.

Are you Willing to Get Started with DevOps Automation?

How AI Is Changing the Outlook of the Retail Market

How AI Is Changing the Outlook of the Retail Market

The Best Examples of Using AI in Retail:

Artificial Intelligence is omnipresent in today’s retail sector. Here we represent some examples of retailers that are efficiently using AI in their business functions:

Sephora Utilizes AI to suggest makeup. Famous makeup brand Sephora uses AI to recommend makeup for its customers. Finding the correct makeup for most females can be challenging because of their skin type and color complexion. Color IQ examines their face and advises foundations and concealers accordingly. LipIQ is also a component of the ColorIQ technology that scans the lips and proposes an appropriate lip color.

LOWES uses LoweBots to find Items. Finding an item in stores where multiple items are placed can be a back-breaking task for customers. This is where  LoweBots come in conveniently. In the LOWES stores, these bots wander around and give directions to customers. They will keep asking about what you’re trying to find and assist you based on the answers you provide them.

North Face brand advises Coats to CustomersNorth Face employs AI to offer coats to its customers. The customer has to tell the event details to the bot, which can figure out which coat will best suit the event.

Walmart employs AI to Monitor InventoryWalmart is one of the earliest retailers to use AI to operate its in-store inventory. The advanced bots can scan all the galleries to see the inventory level. They send notifications to the store’s depository to refill inventory whenever required.

How AI is Setting New Consumer Standards:

Artificial Intelligence plays an essential role in generating new consumer trends and standards. AI plays a vital role in setting new consumer trends and standards. Consumers do not need to struggle hard to find products anymore. Previously, consumers faced a dilemma in finding out what they were looking for.

Artificial Intelligence now maintains track of their last searches and recommends a product even when the customer isn’t asking for it. It just strikes the nail on the head, as customers now don’t have to see the unwanted ads anymore. Since AI-fetched ads are relevant, they become more engaging rather than annoying for customers.

Social media users are also experiencing the power of AI. Have you often seen a product on a social media platform when you have searched for it on Google? Possibly, every time. These targeted advertisements suggest to customers what they want. If many customers like the product, then it becomes a new trend. AI also identifies customer behavior towards a particular product and aids companies in knowing whether it’ll sell.

The Future of AI in Retail:

No doubt, the future of AI is shiny and glittery in the retail world. Although this technology offers so many benefits, it is still in its beginning stage. We are the first generation experiencing the magic of AI. The reality is that AI has just started to bloom, and in the coming years or decades, we will be able to see its full potential.

Even when it is in its infancy, many retail companies are leveraging its benefits. They now create their strategies based on consumer behavior. While AI keeps advancing, we can expect it to automate more and more operations in the retail industry in the coming years.

IoT Digital Transformation is on the Way to Change the Business Outlook

IoT Digital Transformation is on the Way to Change the Business Outlook

The energy industry is experiencing consequential changes as it encounters numerous challenges with an increasing population, like increasing demand for electricity, integration of renewable energy sources, and emerging electric vehicles. The best way to address these issues is by embracing edge computing and using it potentially. It is a distributed computing paradigm that allows data processing and analysis nearer to the source

In this blog, we will understand how edge computing can change the outlook of the energy industry, making it more reliable, efficient, and sustainable.

Challenges faced by the current Energy Industry

 The existing traditional power grid is one of the most necessary infrastructures in our day-to-day lives. It powers our homes, hospitals, schools, industries, and other essential things for our daily routines. However, power grids face numerous challenges because of the increasing electricity demand, the integration of renewable energy sources, and the growing market for electric vehicles. These challenges can be solved using innovative solutions to optimize the grid’s operation, improve its resilience, and diminish energy waste.

What is Edge Computing?

 Edge computing can be explained as a distributed computing paradigm that allows data processing and analysis closer to the source. It can be installed in various locations in the power grid, like substations, to process and analyze the data generated by the sensors in real time. Edge can also support optimizing the power grid’s operation, improving its resilience, and cutting off energy waste.

3 essential Pillars of Edge Computing 

  • Improved scalability: Edge computing allocates storage and processes it over many locations, reducing the investment cost for infrastructure and capacity for a higher traffic volume or better algorithm.
  • Better data security and sovereignty: As data remains at its original location, the risks for illegal access or theft are decreased automatically.
  • High amount of data processed with less latency: Frequency analysis allows it to work with thousands of data almost instantly, with just milliseconds required for analysis and response. This solved the near real-time use cases- something impossible in Cloud Environments that are more inclined to offline analysis of batch information.

The IDC’s report on ”Edge Computing Solution Driving the Fourth Industrial Revolution”- emphasizes the need for the pillars mentioned above. A survey was conducted in which around 802 industry leaders who adopted Edge Computing – almost 30% stated that their primary motivation was bandwidth costs, 27% data protection, 19% latency constraints, and 12% surveyed were from the energy sector.

Introducing Smart Power Grid with Edge Computing 

In a smart grid system, multiple sensors are installed to gather data related to the health condition and performance of the power grid. These sensors create immense amounts of data that need to be processed and analyzed in real-time to make reasonable decisions. Rather than sending all the generated data to a centralized data center, edge computing is data processing at the network’s edge, closer to the source.

Edge computing supports optimizing the power grid’s operation, improving its resilience, and lowering energy waste.

For example, a power-consuming company can install edge servers at different locations in the power grid, like substations, to process and analyze the data created by the sensors in real time. The edge servers use machine learning algorithms to anticipate the power demand and supply, detect faults, and effectively manage electricity distribution.

Edge computing also enhances the power grid’s resiliency by allowing autonomous decision-making at the edge in case of network disruptions.

For example, assume any substation loses connectivity with the central control system. In that case, the edge servers can return to a backup mode and continue to function autonomously using locally stored data.

The Advantages of Edge Computing

Edge computing can bring change to the energy industry and make it more reliable, sustainable, and efficient. By opting for edge computing, power utilities can optimize their processes, lower energy waste, and offer higher-quality services to their customers. Edge computing can resolve the power grid’s challenges, such as growing demand for electricity, incorporating renewable energy sources, and emerging electric vehicles.

Besides this, edge computing can allow energy utilities and municipalities to develop and deploy data processed quickly and efficiently, allowing them to churn profit from edge computing solutions more effectively.

Users with no or low programming experience can design and deploy data processes promptly and efficiently using a convenient, low-code tool. This can assist in streamlining the deployment of edge computing solutions and allow energy utilities and municipalities to resolve the power grid challenges.

Main issues of IoT Edge Computing for the Energy Sector?

 IoT Edge is powered by solid investment by technology manufacturers in cutting-edge solutions with smaller, lower-powered, and lower-priced microcomputers that can operate as IoT Edge Computing nodes at scale.

Similarly, operating systems and software are also created to give these nodes the capacity to conduct algorithms in a cyber secure way, generally packaged in virtual software “containers” like Docker.

Conclusion

 Today, if we look into the energy industry, we’ll find out that the energy industry encounters many challenges, like increasing demand for electricity, incorporating renewable energy sources, and overflowing of electric vehicles in the market. With the increasing population and development of industries, it has become necessary to adopt and embrace technology that cannot just solve the problem but also does not negotiate with the quality of operations.

Edge computing has the prospect of revolutionizing the energy industry, making it more dependable, sustainable, and efficient. By embracing edge computing, power utilities can enhance their operations and reduce the risk of energy wastage.

How Artificial Intelligence in the App Industry is Changing the Future

How Artificial Intelligence in the App Industry is Changing the Future

Artificial Intelligence is no more in fiction stories now. Today in our daily life, we can observe AI performing different tasks.

Even if it is a customer or business organization, machines are vigorously improving the intelligence of humans. The mobile app sector is growing day by day. After the covid hit the world, it has become the basic need of many companies. For customers, it has become a way to reach the maximum number of things through the mobile application. With the involvement of AI, it is changing at an incredible pace, and the users get the best use of the app to meet their basic daily needs.

What is Artificial Intelligence?

It is a system capable of imitating intelligence and behavior to work and act like humans. It is possible because of some of the algorithms. It provides a virtual assistant without any human intervention. AI delivers predictive messaging, learning and planning capabilities, and voice recognition that will assist in understanding the language. It holds impressive skills in solving problems. It just does not work for business organizations but also magically works for customers. It fetches the best solution to help your business flourish and build a strong customer relationship.

Benefits of AI

  • It provides the best output of investment where the marketers will receive essential feedback from the users. Digital marketing for all kinds of businesses guarantees that return is always two-way. Both customers and organizations should get the return they expect to survive in the competitive tech world.
  • AI also assists in developing customer relationships. It is challenging for an organization to personally connect with each customer’s problem. In such cases, AI works as a savior. Whenever the user reaches customer service on the app, AI offers incredible help and gives the most-suited solutions to the users. Therefore, creating a good relationship with the customer.
  • AI also enables the company to make a fast decisions on any strategies. It assures that the company can access real-time situations; AI provides qualitative customer and business decisions. It is the most convenient way to connect with the process and gain success in the field.
  • Market measurement plays a crucial role in the business. AI offers the best market measurement where the company is aware of the risks and benefits of an issue.

Here are the following ways through which AI is supporting the mobile app industry:

Internet of Things (IoT):

Today, many devices are connected to the internet. If not mobile, the internet connects with a fitness tracker, kitchen appliances, watch, TV, etc. The connected device collects user activity data and provides powerful insight. Both AI and IoT work together so that customers get the most enhanced experience. With the support of digital assistance, the developer is able to develop an app that will easily connect to the TV.

AI is connected with sensors in broad options and offers a location-based experience. AI is most appreciated in app development and is helpful in building the best app.

Automation development:

Development of the app demands excellent skills. In the process, many tasks are to be completed, which eats up time many times. However, by using AI, the development team can easily save time as well as money that can be used to automate the process. Not just this, AI can provide consistency and eliminates errors. AI can also help in skipping the repetitive tasks and mistakes caused by it.

AI chatbots:

When you visit any website, you’ll see a chatbot below the website. If you click on the chatbot and fill in your details, AI will identify your need and pattern and reply accordingly. If your problem has a solution, AI will immediately solve it and give sales support and customer service.

Understand user:

Selecting the clues from the users, AI comprehends what the users need and assure that they get the same thing. It analyzes the activities and behavior of the user and provides the best suggestions. Additionally, they can understand the user’s behavioral patterns and apprehend the users’ needs.

Personalization service:

We all know that every customer’s need is different from each other. Therefore, customization is the best way to offer customer satisfaction and will boost sales. The modern AI service will ease the work of developers and offer the best-customized services. AI detects the customer’s pattern, taste, or preference. It suggests the same interest and preferences so that customers get engaged and shop from the options.

Mobile App Industries that use AI to change the future

Healthcare App:

Now, healthcare services are just a dial away. You can get the best healthcare services at home and receive the reports in your mail. With the inclusion of AI in services, a patient’s medical details are now collected, stored, and managed efficiently.

Automotive App:

In the automotive sector, all the brands are embracing the latest vehicles where Artificial intelligence enhances the driving experience. While driving, one can use AI features for navigation and listening to music. Driverless cars are next-level features offered by AI.

Finance App:

In the banking sector, AI is helping customers to save money by educating them on where to invest. It assists them so that they can track their expenses and manages everything on points. It assures that finance sectors can help customers in solving their problems while sitting in their homes.

Law App:

Sometimes it takes work for attorneys to answer all the questions in person. In that case, AI can help by answering all the legal questions to clients so that they get answers to all their doubts.

Conclusion:

Though Artificial intelligence has its challenges, it still never fails to improve the app industry. Today, many app owners in various sectors are using this technology to stay updated with the trend and customers as well. AI ensures they can create a good relationship with the customers by recognizing their behavioral patterns in shopping or anything else. Therefore we can conclude that Ai is more than a technology. It is a blessing for app owners to develop a good relationship with customers.

How can Artificial Intelligence Boost the Manufacturing Industry?

Today, most of the Giant industries, around 83 percent, believe that AI delivers better outcomes; however, only 20 percent have embraced this technology. It is pretty clear that a stronghold on the domain is important for successfully adopting artificial intelligence in the manufacturing industry.

Domain expertise is important for successfully adopting artificial intelligence in the manufacturing industry. Jointly, they form Industrial AI that uses machine learning algorithms in domain-specific industrial applications. AI can be potentially used in the manufacturing industry through machine learning, deep learning, and computer vision.

Let’s check out some of the critical needs in artificial intelligence technologies in the manufacturing industry to obtain a better picture of what one should do to keep the business up-to-date and seamless.

AI Is a Broad Domain

Artificial intelligence is not the correct way to describe all the technologies, and we’ll discuss that they have applications in manufacturing industries. AI is a big subject with different methods and techniques that fall under it.
There are robotics, natural language processing, machine learning, computer vision, and many other technologies that also need attention.

Keeping this in mind, let’s begin with artificial intelligence applications in the manufacturing industry. So here are some industrial uses of AI.

The Goal of AI in Manufacturing

Artificial intelligence studies how machines can process information and make decisions without human interference. The best way to understand this is that AI aims to mimic how humans think but not necessarily. We all know that humans are better and more efficient in performing certain tasks, and in certain tasks, they are not. The best type of AI is one that can think and make decisions rationally and accurately. The best way to explain this is that we all know that humans are not efficient enough to process data and the complex patterns that appear within large datasets.

However, AI can easily do this job using sensor data of a manufacturing machine and pick out outliers in the data that provide information about the machine that will require maintenance in a few weeks. Artificial Intelligence can perform this in a fraction of a human’s time analyzing the data.

Robotics: The foundation of Modern Manufacturing

Many applications of artificial intelligence include software in place of hardware. However, robotics is mainly focused on highly specialized hardware. As per Global Market Insights, Inc, the industrial robotics market is expected to grow more than $80 billion by 2024. In many factories, for instance, Japan’s Fanuc Plant, the robot-to-human ratio is approx 14:1. This reflects that its possible to automate a large part of the factory to reduce product cost, improve human safety and enhance efficiency.

Industrial robotics demands specific hardware and artificial intelligence software to assist the robot in accurately performing its tasks. These machines are specialized and are not in the business of making decisions. They can run under the supervision of technicians, and if not even, they make very few mistakes compared to humans. Since they make very few mistakes, the overall efficiency of a factory improves when integrated with robotics.

When artificial intelligence is integrated with industrial robotics, machines can automate tasks like material handling, assembly, and inspection.

Robotic Processing Automation:

Robotic processing automation, artificial intelligence, and robotics are among the most familiar. It is important to understand that this process is not related to hardware machinery but software.

It involves the principles of assembly line robots for software applications like data extraction, file migration, form completion and processing, and more. However, these tasks do not play very important roles in manufacturing; they are significant in inventory management and other business tasks. It becomes more important if the production operation requires software installations on each unit.

Computer Vision: AI Powering Visual Inspection

Quality control is the manufacturing industry’s most significant use case for artificial intelligence. Even industrial robots can make a mistake, though the possibility is less than humans. It can be a huge loss if a defective product reaches the consumer by mistake. Humans can manually monitor assembly lines and identify defective products, but no matter how attentive they stay, some defective products will always slip through the cracks. Therefore artificial intelligence can help the manufacturing process by reviewing products for us.

Adding hardware like cameras and IoT sensors, products can be interpreted by AI software to catch defects automatically. The computer can then automatically decide what to do with defective products.

Natural Language Processing: Improving Issue Report Efficiency

Chatbots driven by natural language processing is an important manufacturing AI trend that makes factory issue reporting and helps requests more efficiently. It is a domain of AI that specializes in mimicking natural human conversation. Suppose workers can access the devices to communicate and report their issues and questions to chatbots. In that case, artificial intelligence can support them in filing proficient reports more promptly in an easy-to-interpret format. It makes workers more accountable and decreases the load for both workers and supervisors.

Web Scraping:

Manufacturers can use NLP for an improved understanding of data collected with the help of a task called web scraping. AI can check online sources for appropriate industry benchmark information and transportation, labor, and fuel costs. It can help in boosting business operations.

Emotional Mapping:

Machines are quite poor when it comes to emotional communication. It is very challenging for a computer to understand the context of a user’s emotional inflection. However, natural language processing is enhancing this area through emotional mapping. This brings a wide variety of opportunities for computers to understand the feelings of customers and operators.

Machine Learning, Neural Networks, and Deep Learning

The three technologies used in the manufacturing industry are machine learning, neural networks, and deep learning, which are artificial intelligence techniques used for different solutions:

  • Machine Learning: It is an artificial intelligence technique in which an algorithm learns from training data to decide and identify patterns in collected real-world data.
  • Neural Networks: Using ‘artificial neurons,’ neural networks accept input in an input layer. The input is passed to hidden layers that increase the weight of the input and direction to the output layer.
  • Deep Learning: It is a machine learning method where the software mimics the human brain like a neural network, but the information goes from one layer to the next for higher processing.

Future of AI in Manufacturing

What will be the next role of artificial intelligence in manufacturing? There are so many thoughts and visions coming from science and technology. The most visible change will be an increased focus on data collection. AI technologies and techniques used in manufacturing can do so much work independently. As the Industrial Internet of Things grows with increased use and effectiveness, more data can be gathered and then used by AI platforms to improve different tasks in manufacturing.

However, with the advancement in AI in the coming years, we may observe completely automated factories and product designs made automatically with less human interference. However, reaching this point is only possible through continuous innovation. All it requires is an idea- it can be the unification of technologies or using technology in a new case. Those innovations alter the manufacturing market landscape and help businesses stand out.

How To Build Smarter Apps Using Mobile Artificial Intelligence?

Mobile artificial intelligence is already revolutionizing the mobile app development game. In 2020, the mobile AI sector crossed the valuation of 2.14 billion dollars, and this number will possibly grow 4.5x by the year 2026. It is quite apparent that mobile artificial intelligence holds a great future so let’s not waste time and know this innovative technology and its use in mobile app development.

What are the benefits offered by Mobile Artificial Intelligence?

Mobile artificial intelligence endeavors to make mobile technology smarter and more functional for users. Amazon’s Alexa Shopping product is a very popular example of mobile Artificial Intelligence. It has reduced countless hours of customer support work for Amazon. At the UX level, it has also brought prominent quality of life improvements to end-users.

It is expected that the most significant growth will likely come from AI virtual assistant technology. The remarkable success of last-generation AI assistants like Alexa and Siri shows the power of the technology. 

AI-capable processors in next-gen mobile devices are featured with various intelligent solutions such as language translators, AR and VR enhancement, context-aware AI assistants, and better security attributes.

The fortune of these advanced apps and on-board solutions is highly extensible, and its integration with the third-party mobile application provides developers with a full-fledged AI development ecosystem.

It is also projected that sectors such as smartphones, cameras and imaging, drones, robotics, automotive, and cloud computing also show incredible growth from mobile AI technology.

The government of the United States and other western countries are trying to prohibit restrictions on consumer drone technology; the drone sector will expand steadily in the presence of AI-capable mobile processors.

Next-gen drones offer an amazing home, and enterprise user features like AI-assisted photography, surface mapping, GPS, AI autopilot and navigation, and many more applications.

Eventually, it is impossible to ignore the potential of next-gen AI to reduce numerous human hours using the AI app development pipeline. AI aids programmers in crushing barriers that consume a lot of time and money in processes like porting software across platforms and removing manual error-checking and troubleshooting once done by human testers.

How AI Makes Your App Smarter?

The increasing number of mobile users and change in trend is shifting the demand toward more customized features.

Earlier, UI was managed in a first-party way by app developers; now, many app developers use on-board UI from smartphone manufacturers to offer an interface for their users. These manufacturers include AI-capable processors, smartphones can interpret user behavior and conduct real-time customization of the app interfaces for a better user experience.

Thus we can say that  Artificial intelligence fetches remarkable new possibilities for mobile development via machine learning, biometrics, recognition technologies, and voice technologies.

Machine Learning:

Today, many businesses are investing so much money into machine learning development as it can predict and optimize user behavior, leading to upsells and cross-sells.

Machine learning improves a better user experience and ensures users keep returning by delivering appropriate content to drive up total usage hours.

The advanced technology has stirred up the competition in the app market. Machine Learning helps companies keep users engaged and entertained, ultimately improving their rank and rating on google play and other App stores.

Online retailers use ML to create customer profiles based on various data like customer purchases and their relationship with other users, the customer’s behavior on the app or website, and many other contributing factors. Using the data, retailers offer recommended products based on the customer’s interest.

For example, Amazon extensively uses machine learning to connect customers with products they might be interested in buying. 

Transport providers like Uber also use this latest technology in their logistics apps to provide drivers with updated information on the road. 

ML solutions predict the fasted possible route for drivers to avoid traffic jams.

Recognition Technology:

The addition of recognition supported by Mobile AI has changed the outlook of the entire mobile utilization pattern. Image recognition technology like Google Lens and other similar apps have revolutionized the way of interaction between people and the world. This image recognition app allows users to recognize the specific plant varieties, and OCR powered by ML can change the foreign language into the native language without delay.

Financial institutions are adopting the same technology in their mobile apps to process checks without needing the customer to visit the bank for the same purpose. Pharmacists are employing this tech to scan medical prescriptions and import them into software to know the exact place of the medicine or its availability in the store.

Next-gen mobile AI improves the existing facial recognition technology by using technologies like artificial neural networks to boost the process of detecting human faces.

AI biometrics boost the level of protection of mobile applications ensuring better privacy for storing sensitive data. This feature also increases the use of mobile applications in the sectors like finance, healthcare, government, etc.

Voice Technologies:

Highly advanced text-to-speech technology provided by mobile artificial intelligence provides clear voice functionality generated from text input. Better text-to-speech empowers visually impaired users to navigate apps and websites, changing static text into clear and understandable voiced content.

AI assistant technology uses voice recognition provided by mobile artificial intelligence to converse with the user without any latency. Commands by the users are processed into actions by the virtual assistant, offering a smooth experience.

For instance, our very popular Alexa and Siri of Amazon and Apple, respectively, can execute different user requests.

The Future Transformations

Mobile artificial intelligence is holding a great scope in the coming years. Many industries are embracing technology and facing rapid transition. Integrating mobile processors with AI- friendly features will enhance the AI capabilities of first and third-party applications.

The key technologies contributing to the changes are machine learning, recognition technology, biometrics, and voice technologies. Mobile AI optimizes the process, removes obstacles for users and providers, delivers relevant content, enhances end-user engagement, and improves the development process. AI-integrated mobile apps are more extensible, modular, dynamic, and offer superior performance for developers and users.

How is IoT Helping The Procurement Team in Improving Productivity

How is IoT Helping The Procurement Team in Improving Productivity?

Today, almost every device is connected; whether it is your smartwatch, air conditioner, or television, we can say it’s a world where devices are more connected than people. No, doubt these connected gadgets present around us make our lives easier by working systematically. This is possible because of the most popular concept known as the Internet of Things, which can also influence the procurement team.

IoT, a.k.a Internet of Things, can be defined as a network of interconnected computing devices, either mechanical or digital machines. This technology allows transferring data without human-to-human interaction or human-to-computer interaction. Communication is possible using networks and cloud-based systems.

An IoT ecosystem includes web-enabled smart devices that collect, send and work on data collected from their surroundings utilizing embedded systems such as CPUs, sensors, and communication hardware.

IoT devices can exchange sensor data stored in the cloud for analysis purposes or examined locally by interlinking to an IoT gateway or other edge devices.

Besides this, these gadgets can connect with other related devices and respond according to the information they receive from one another. Even individuals can operate the devices for the beginning setup, give instructions, or recover data; the device can perform most of the tasks without human interference.

The Role of IoT in Procurement

Procurement is an important part of the business. It demands the implementation of new technologies to boost productivity, enhance customer service and save costs. As of now, the procurement process is also embracing automation; IoT in this process is one of the most exclusive things happening in the era of digital transformation.

The inclusion of the Internet of Things will provide greater spending visibility and understanding of the supply and equipment used for the procurement process. So, with a proper understanding of what is being used and the requirement specified, the procurement team will have access to optimize catalogs and manage expenditure. Forecasting demands more closely using analytics can significantly improve budget and contract management. This also helps in improving budget and contract management. Despite this, the data generated through IoT sensors and other devices can assist in making informed decisions.

Let’s know how IoT works in procurement.

Traceability of Materials:

A study done by a McKinsey Global Institute shows that by the end of 2025, the Internet of Things’ possible contributions to inventory management, logistics, and supply chain management would reach 560 billion to $850 billion per year. This shows the possible IoT-oriented future awaiting us. Most of the time, IoT contributes to these sections by tracking. IoT sensors can help in making inventory management systems more effective.

For instance, RFID tags connected with IoT devices can track physical inventories and eliminates the need to scan barcodes or labels. In fact, businesses with vast inventory can track the days before items expire using interlinked IoT devices, saving the business from huge losses. IoT also prevents product theft by enabling businesses to know the location of their products.

With the use of machine learning, procurement teams can manage products per demand.

Supply Chain Visibility:

In this process, the procurement team can also potentially use IoT technology. Supply chain visibility, items are documented as transported from the manufacturer to the customer. An IoT-enabled system can read data from various devices like smart tags and sensory data like surrounding temperature and humidity, vehicle speed, and geolocation and accordingly follow the supply chain when connected to it.

The adoption of IoT devices to track inventory and route planning provides the details about where and when items are delayed in transportation. This allows emergency planning and identification of other options to accelerate the supply chain.

Stock Management:

Along with smart shelves and storage bins that inform about the stock levels in real-time and how long the product has been on the shelf, IoT also assists in detecting the pattern of consumption.

For instance, if a product named X is on shelf A and has been the quickest utilized item, IoT sensors will monitor the usage rate and suggest its economic order quantity (EOQ).

This clears how essential procuring an item is, which products are needed, and what amount. Procuring the right inventory quantity reduces costs by lowering waste and the menace of shortage.

Monitor and Alert Maintenance:

The sudden breakdown of equipment in a production unit is the most horrifying dream as it disrupts the business. If the condition of the equipment is not known, things become more difficult and result into process disturbance, indefinite downtime, and even business loss. Regular monitoring of the equipment’s condition through IoT sensors permits the team to watch indicators like vibration, oil, temperature, and performance.

When these indicators go out of range, the sensor alerts the team via computers.

In fact, smart sensors also alert when a machine’s working pattern changes or is about to fail. So this allows teams to schedule the maintenance, decrease the chances of sudden machine failure, and ensure seamless productivity.

Better Decision Making With Predictive Data Analytics:

Procurement teams can predict the future using predictive data analytics and spend analytics. These predictions assist in making critical decisions for designing and executing business techniques. Continous flow and accumulation of data with IoT devices also help create more robust and relevant historical data.

Infact, joining IoT data with additional data coming from other sources can boost business growth.

For example, knowing what quantity of a product is needed can help send accurate requisitions for approvals and create error-free purchase orders.

For example, having information on what quantity of a product is being used can help in sending accurate requisitions for approvals and generating error-free purchase orders. This results in an efficient and effective purchase management system. Data collected by IoT can also be used for onboarding suppliers with supplier management solutions to get new products based on previous performance metrics and set criteria.

IoT Procurement Takeaway:

The Internet of Things has become a sensation and is impacting almost every industry. So, it will be smart to invest in this technology and unheave the existing business model.

The procurement team requires a comprehensive IoT framework consisting of machine learning, artificial intelligence, and embedded technologies. These technologies, all together, can bring holistic change and offer maximum benefit.

Maximizing AI and IoT Business Value While Protecting Customers privacy

How to Maximize AI and IoT Business Value While Protecting Customers Privacy

Today more than 9 billion devices potentially utilize Artificial Intelligence (AI) and the Internet of Things (IoT). No enterprise or individual is untouched by the influence of these latest technologies. They are using it through their smartphones, applications, cloud services, sensors, RFID systems, and various other means. These unparalleled opportunities are skyrocketing business operations and constructing deep customer relations. 

But all these benefits come with a situation that every business needs to address appropriately. Many business owners and executives prioritize customer privacy and security while utilizing exceptional opportunities of AI and IoT, and all this is possible through CIAM.

CIAM to Maximize Business Value

CIAM, Customer Identity and Access Management, is a sub-category of identity and Access Management (IAM)that aids in improving customer experience and security concurrently. CIAM integrates digital identity-based authorization with authentication to customer-facing applications. Businesses can opt for CIAM solutions either on-premises or as-a-service. They can cause it through interconnected identity APIs on web services and applications.

As per IBM Security, today, about 80 per cent of organizations are facing security breaches, and they stated that cybercriminals targeted customers’ personally identifiable information that is PII.

As per them, a compromised security breach on average costs approx $150 per customer. Thus, management is an essential security measure every business should add. There are four primary things CIAM does when implemented.

  • It facilitates customized authentication mechanisms for enterprises and their customers.
  • It improves the customer registration and login experience by reducing the risk of a data breach or account hacking.
  • It generates scalability regardless of the customer headcounts.
  • It Impacts AI and IoT amid expanding Security and Privacy Demand.

We all know that AI and IoT will be flowering in the coming decades. Businesses are trying to utilize these technologies properly to improve business techniques and methods. IoT promises to produce new mechanisms that can streamline business operations and boost customer experiences with the increasing business workload and hiking competition.

On the other side, AI is carrying a revolutionary change in time-consuming and tiring manual jobs by automating systems. It can also extract insight from granular customer data to enhance business efficiencies and create better customer engagement opportunities.

AI and IoT are the leading technologies that support modern business. However, these come with the concern of data privacy and security. Collecting and processing data using modern technologies might compromise customers’ privacy. But organizations that respect customers loyalty and trust use essential privacy protection techniques. Organizations can raise their standards and services from their competitors by benefiting from CIAM and privacy maintaining management systems.

Security and Privacy Challenges arising from AI and IoT:

Most progressive organizations need AI and IoT to expand and know the growing sensitivity of customer data privacy. Regardless, the dawn of AI and IoT drags in security and privacy challenges jiggling user trust.

IoT Security Challenges

With increasing IoT system connection, evolution, and expansion across any industry or organization, it becomes challenging to keep data and communication safe and secure. IoT is still in the blooming stage, along with its communication protocols. Business executives and customers find it challenging and problem-alluring to benefit IoT systems due to internet-based software attacks, authentification flaws, network-driven attacks and hardware attacks.

Connecting Data in AI and IoT systems

Organizations struggle with growing pains in adopting these technologies because of privacy reasons. IoT devices are implemented in sensitive areas like the healthcare, pharmaceutical and finance industries. Without securing the authentication of employees and customers, the entire system data and privacy could face significant risk. Thus, it is essential to ensure the security of an organization’s and its customer’s data while churning the best AI and IoT.

Inadequate User Experience with Conventional Security Tools

In IoT, user experience is highly non-interactive. Customizing IoT systems for excellent user experience without compromising security and privacy is complicated in legacy systems. The authentification mechanism in IoT devices does not provide a user experience. Lack of user experience affects the business value of AI and IoT-driven systems.

Disadvantages of Legacy Security Measures

An organization that use AI and IoT systems deploy security and privacy controls to mitigate the challenges mentioned above. There is no doubt that these legacy security measures can reduce data breaches, identity leaks and control access management but at the cost of lowering the potential of AI and IoT. They might mislead that adopting AI and IoT technologies are unsafe or risky.

As per a report, senior executives and managers are concerned that AI and IoT might expose customers and employees to strict privacy, ultimately reducing the potential of AI and IoT usage in the future. These hurdles will sustain for a long time until organizations switch from legacy security approaches to CIAM solutions.

Advance CIAM solutions enables AI and IoT integration without hammering user privacy, security, and user experience. Organizations can leverage CIAM solutions that align with the business guidelines yet provide cybersecurity and privacy protection while customers interact with IoT devices or AI-enabled systems.

Integrating CIAM Enabled AI and IoT

Security researchers and CIAM providers support customer identity and access control solutions while dealing with IoT and AI-driven systems. Such effective solutions help manage the challenges of governing, managing, safeguarding customers’ access to sensitive data. CIAM is necessary to balance AI and IoT-driven organizations with customer identity management. CIAM solutions double-shield the security by facilitating MFA, SSO, social identity-based login, PIN, etc.

CIAM solutions also have classically-minted IoT authentication methods and AI-based intelligent login procedures that enhance user experience that help in strong protection upon account takeover and data privacy without negotiating with user experience. 

CIAM can provide tracking user consent, understanding and logging activities and helps in recognizing user preference at a granular level. It prioritizes customer privacy and security while generating a rich user experience in these static devices. It also aids businesses in deploying successful AI and IoT solutions.

Aligning Solutions

Organizations can manage or align CIAM solutions as per business policies. It can even analyze data extracted by AI or IoT sensors using predictive models while clearing privacy hurdles. It also emphasizes eliminating and removing data on demand when any customer ends the service or relationship.

Here are some essential points that the CIAM solution displays at an enterprise level.

Adopting Solutions

Today organizations are embracing CIAM solutions. These CIAM solutions offer different authentication techniques and measures like two-factor authentication, social media identity as login, biometrics login etc. Furthermore, the CIAM solutions also provide the service of employee identity and access management (IAM).

Maturing

The maturity of CIAM solutions assists organizations in deploying AI and IoT systems without concern. Advance CIAM solutions have direct measures addressing AI and IoT-specific security concerns. Reports state that organizations using advanced and matured CIAM solutions are 33 per cent more potential to implement plans in deploying AI and IoT than organizations with low CIAM maturity.

Advancing

Advanced CIAM solutions allow organizations to overcome AI and IoT-related security challenges. As per reports, organizations having mature CIAM solutions are 26 per cent to 46 per cent more feasible to overwhelm AI and IoT-driven security issues.

Deploying

Deploying mature CIAM solutions supports the security teams to draft a solid plan. Organizations with progressive CIAM solutions are 20-52 per cent more potential to boost business value without impacting the user experience or privacy. Besides this, these solutions also minimize customer data breaches and produce insights from the granular data they gather. 

Artificial Intelligence has different building blocks like  Machine Learning (ML) and Natural Language Processing (NLP). Although AI can generate a range of insights into several CIAM processes, the start of CIAM systems requires organizational knowledge, policy setup and human interaction to gain value from AI. 

IoT sensors and devices capture an immense amount of data, including device location and even status. Such data are primarily stored in cloud-based servers. The scalability and distributed data from IoT devices increase data mishandling. Such data breaches also cause corrupt authentication. Organizations can use CIAM solutions for better authentication, regulatory data collection, and compliance in such cases.

Running on Automation

Today, almost all industries have adopted automation, which means most things operate through AI and IoT. Business owners and executives interested in utilizing IoT and AI in full potential take precautions about customer data security and privacy without negotiating with user experience. Organizations must employ mature Customer Identity and Access Management solutions to integrate smart authentication and authorization. These CIAM systems offer omnichannel interactions and authentication along with track while managing granular user consent, preferences, and activities.

Why do You Need to Switch The AI-Enabled Storage System?

Artificial Intelligence, the term itself defines a lot about its behaviour, work and outcomes. Artificial Intelligence is like magic which allows machines to think like humans. Companies across the world are potentially utilizing this trait to enhance productivity and stay competitive using better insights. The proper use of AI and extracting the most out of the insights it generates can speed up the slow running business or restore the almost destroyed business. Artificial intelligence should be able to extend from start to end, developing its best version in an effortless and cost-effective infrastructure.

But do you know, AI-enabled systems have to face many issues in storage and deployment? Could AI be able to sort out all these challenges?

Well, data is the fuel that powers AI, but sometimes it gets trapped or stored in a way that it becomes challenging or costly to reach, manage or grow. AI depends on data, and its results depend on the quality of data. Organizations must realize the importance of data they generate, their application, removal of undesired data and the lifespan of the data. Businesses should organize the data, including pit-stops for compliance checks, data optimization, data cataloguing, & data governing. All the above are difficult challenges that organizations need to overcome.

At this point, AI-enabled storages come up into the scene. AI-enabled storage facilitates real-time updates regularly from different enterprise data sources. It optimizes data and performs other smart, automated work on it without any human interference.

Now, the question is- What are the benefits of AI-enabled storage? Let’s know about it. As we know, data is the fuel for AI; it means that existing data storage needs to be transformed into an intelligent and automated storage solution. The storage system should be able to do deep learning, and GPU processors should be capable of providing real-time insights.

Here are the key advantages of having an AI-enabled storage system.

Key advantages of having an AI-enabled storage system:

1) Scalable data storage: AI-enabled systems process massive amounts of data in a short period. This amount of data needs a significantly large storage system. Managing a large amount of data sets demands for a storage system that can be extended without limits or auto-scale as per the need. This demand can be fulfilled using AI-enabled cloud storage.

2) Shared Data Stores: Today, shared data has become more valuable than stored data. Thus, in this data-rich as well as the data-dependent world, AI-enabled storage utilizes modern analytics and AI workloads to deliver extendable storage platform to drive downtime to insights for the better business outcome.

3) Data Insights: AI-enabled storage system uses a variety of analytic tools and processes to provide highly efficient, high-performance data insights about billions of objects and files stored. These data insights are highly helpful for taking major business decisions.

4) Reporting and Alerting: AI-enabled storages help in developing reports on data functions and insights produced. They even facilitate the configuration of alerting systems to get instant notifications for any data storage failure or data exception conditions.

  • For example,
    Power BI by Microsoft is one of the smart reporting system facilitated by AI storage. This system supports Learning Data Lifecycles and helps in managing the storage of particular types of data in the best possible way.

5) Failure Forecast: Storage failure can badly affect the productivity of the business. Whenever storage failure happens, one must find out about the lost data and then restore the data through a backup or copy process. This complete failure to restoration process eats time and reduces productivity. In this situation, AI-enabled data storage system can make things easy by detecting and restoring data from the point of failure.

6) Cost-effective: AI-enabled storage system identifies the useful data and analyzes the pattern in which stored data is used. This helps businesses in saving the extra expenditure spent on managing vast terabytes of data and allows to use data storage capacity wisely.

Why is it beneficial to opt sing AI-enabled storage over average cloud storage?

  • AI-enabled storage allows using cost-effective software-defined storage. This enables the storage of data in a way that customers can efficiently access it for different insight-led actions.
  • The other advantage offered by AI-enabled storage over normal cloud storage is that it provides automation of essential functions like infrastructure, capability, and storage management and maintenance.
  • AI-enabled storage holds a more active and manageable structure.
  • AI-enabled storage can smartly administer access rights; it can dynamically re-route data centre data and automatically regulate data centre cooling. Thus it optimizes energy consumption.
  • The AI-enabled storage system consists of highly smart security features to identify data/packet loss during any transition or within data centres. This feature reduces data loss possibilities, raises availability and maintains speed during downtime.
  • Neural storage is another advantage offered by AI-enabled storage. In this storage system, the storage detects and responds to the issues and opportunities without any human interference.

Wrap-up:

Artificial Intelligence is a technology developed to ease the working of productivity or to analyze user behaviour. Data storage has been an issue, and obviously, it plays an essential role in the growth of the business. The introduction of AI-enabled storage has resolved the issue. It has enabled humans to control, monitor and maintain large-scale data storage in scalable and efficient operations. Today, businesses are generating tons of data but segregating useful data and processing them to get actionable information has been a challenging task. However, an intelligent and automated storage system can ease the job by self-predict and analyze real-time data.

It is clear that Artificial intelligence holds a good scope in future and its collaboration with IoT makes it more precious and advanced. The integration will open up new opportunities and growth mediums for businesses and other organizations.

If you are looking for reliable and professional AI service providers or IoT solutions, then connect us. We’ll offer you high-quality services to make your business efficient.

How is Artificial Intelligence Contributing to the IoT Revolution?

Today businesses around the world are extracting the potential outcome by deploying IoT in their business operations. They use it to create new and optimized business possibilities. The firm growth of IoT in various industries is spectacular, whereas AI and its influence on a professional and personal level are considered undervalued. However, combining IoT with rapidly improving AI technologies can design ‘smart machines’ that stimulate intelligent behaviours to make a precise decision without any human interference. Thus, AI-IoT together minimizes chances of error and ensures efficiency along with productivity.

How does AI help in the IoT revolution?

Artificial Intelligence performs smart tasks such as language translation, decision making, voice recognition, etc. and IoT involves a series of interconnected gadgets to transport information over a network. IoT gadgets depend on web connectivity to deliver a fair amount of relevant information about users such as user behaviour, users’ preferences, personal details, etc. It is absolutely wrong to overlook them as they contribute to improving the operations and user experience. However, many organizations have no idea about saving and processing of massive amounts of data which ultimately hinders the growth and potency of IoT.

In this critical situation, AI work as saviour as it helps to store the bulk of data processed by the IoT devices. It analyses and produces a sense of it. Thus, we can conclude that AI is a chief driver which promises to contribute to the exceptional growth of IoT.

Enabling evolving profits for businesses

Earlier, the AI framework was taking care of limited categories of the task. They were not scalable and required human interference. However, advancement in technology has created a successful transformation of AI by involving it into IoT concept. The collaboration of AI with IoT has introduced smart machines which require the least human intervention. The integration of two evolving technology will bring a dramatic change in different industries. Four significant changes that will emerge in businesses after integration of AI & IoT are:

Improved revenue:

Integration of IoT with AI will be profitable for many industries and sectors in terms of generating significant revenues and returns. IoT data providers, IoT gadget, manufactures and companies offering application services based on smart sensors will also enjoy the profits gained by the togetherness of these two highly effective technologies.

Better Safety Standards:

Un-interrupted and regular monitoring allows a business to take prompt decisions to restrict any failure. Up-to-date monitoring improves overall protection and security standards while enhancing productivity. The strict monitoring over different operations even reduces the possibility of harm to lives and assets.

Decreased Expenses:

Assessing the appliances by smart detectors, the sensor installed domestic devices and smart electricity meters cut the extra operational costs in businesses or household works.

Improved user experience:

Smart sensors offer a plethora of opportunities to improve the user experience. These detectors catch the user’s preferences and provide them with options accordingly. For example, smart ac sets the temperature as per the user’s need.

Positive influence on different industries

1) Manufacturing Industry:

Manufacturing sectors like aircraft, automobiles, mining, household appliances, etc. sync smart sensors with their machinery to get future analyses and improve efficiency along with productivity. Industries are endeavouring to develop a wholly autonomous and advanced industrial unit. The installed sensors will assist enterprises in detecting the areas with looming threats, informing about the future maintenance requirement to ensure least machinery falls.

2) Smart Homes:

IoT has introduced advancement in homes too. Today, smart home concepts have taken up speed. Smart homes concept means a house where all the gadgets are connected through a shared network. Integrating IoT with AI will enable devices to interpret the owner’s instruction and make smart decisions, respectively.

A smart home consists of technologies that aim to make lives comfortable by allowing the owner to regulate the device remotely, regardless of where she/he is currently present. It even ensures better safety and security. For example, an owner can pre-plan the time at which he/she wants coffee, or when TV should turn on to watch their favourite show.

3) Body sensors:

Smart detectors have made the lives of patients and doctors easy. These smart devices sense different activities to maintain good health. Today, pharmaceutical companies are investing in medical sensors that can assist patients in keeping a track on their health. In the covid-19 situation, most of the hospitals are offering virtual consultations to their regular patients. Smart sensors are tracking the health of patients and sending health alerts to the doctors if any changes appear. This technology has allowed everyone to follow social distancing to minimize the chances of Covid spread.

For example, sensors evaluate blood pressure, blood sugar levels, etc. and send a notification if any changes occur.

4) Airlines:

Sensors have also become part of the aircraft to monitor the looming risks and errors and to assure safety before any mishap occurs. These smart sensors predict probable errors and calculate the degree of severity to decrease aircraft downtime and ensure safety. Airline companies also use sensors to detect the maintenance issues that typically cause flight delay and cancellations.

5) Oil Rigs:

Oil industries have to spend a fair amount on obtaining oil drilling machinery. Oil companies can use smart sensors to get a timely notification for servicing and reduce the operational cost. Sensors attached to the machines provide the information about the condition of devices and send the alert for maintenance or servicing before any damage happens to a machine.

Wrapping Up:

IoT and AI are technologies which seem to complete each other through one or another way. This deadly combination will change the outlook of many businesses and industries. It will even improve our personal and professional lives in a very positive way. Thus, undoubtedly this ultimate combination is highly beneficial as it will open up new opportunities for growth and innovations—the addition of AI in IoT concept can ease the business processes, improve productivity and provides enhanced user-experience.